BIOLOGY/BIOINFORMATICS (BS/MS)

This accelerated program facilitates the completion of both the BS in Biology and MS in Bioinformatics in just 5 years (in comparison to the 6 years required to pursue the BS and MS separately). Students apply during the spring of their Junior year. The MS component of this program includes two tracks: Non-thesis (internship-based) and Thesis (research based).

CURRICULUM

The following courses are required as part of the BS Biology and MS Bioinformatics degrees. Please note, that prerequisites of MS Bioinformatics courses may not be required of the BS Biology degree. However, they must be completed for MS required courses.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 101</td>
<td>General Biology I</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 111</td>
<td>General Biology I Lab</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 102</td>
<td>General Biology II</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 112</td>
<td>General Biology II Lab</td>
<td>1</td>
</tr>
<tr>
<td>BIOL 251</td>
<td>Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 265</td>
<td>Ecology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 282</td>
<td>Genetics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 283</td>
<td>Genetics Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>

Biology Elective Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 388</td>
<td>Bioinformatics</td>
</tr>
<tr>
<td>CHEM 361</td>
<td>Principles of Biochemistry</td>
</tr>
<tr>
<td>STAT 335</td>
<td>Introduction to Biostatistics</td>
</tr>
<tr>
<td>STAT 437</td>
<td>Quantitative Bioinformatics (BS+MS credit)</td>
</tr>
</tbody>
</table>

Select 6 credits of Bioinformatics BIOL Electives (BS+MS credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 283</td>
<td>Genetics Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>

Chemistry Courses Required

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 160</td>
<td>Chemical Structure and Properties</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 101</td>
<td>General Chemistry A Lecture/Discussion</td>
<td></td>
</tr>
<tr>
<td>or CHEM 105</td>
<td>General Principles</td>
<td></td>
</tr>
<tr>
<td>CHEM 161</td>
<td>Chemical Structure and Properties Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>or CHEM 105</td>
<td>General Principles</td>
<td></td>
</tr>
<tr>
<td>or CHEM 111</td>
<td>General Chemistry Lab A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 180</td>
<td>Chemical Reactivity I</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 221</td>
<td>Organic Chemistry I Lec/Disc</td>
<td></td>
</tr>
<tr>
<td>or CHEM 223</td>
<td>Organic Chemistry A Lec/Disc</td>
<td></td>
</tr>
<tr>
<td>CHEM 181</td>
<td>Chemical Reactivity I Lab</td>
<td>1</td>
</tr>
<tr>
<td>or CHEM 221</td>
<td>Organic Chemistry I Lec/Disc</td>
<td></td>
</tr>
<tr>
<td>or CHEM 225</td>
<td>Organic Chemistry A Lec/Disc</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 240</td>
<td>Chemical Reactivity II</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 222</td>
<td>Organic Chemistry II Lec/Disc</td>
<td></td>
</tr>
<tr>
<td>or CHEM 224</td>
<td>Organic Chemistry B Lec/Disc</td>
<td></td>
</tr>
<tr>
<td>CHEM 241</td>
<td>Chemical Reactivity II Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>or CHEM 222</td>
<td>Organic Chemistry II Lec/Disc</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 260</td>
<td>Quantitative Methods in Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 102</td>
<td>General Chemistry B Lecture/Discussion</td>
<td></td>
</tr>
<tr>
<td>or CHEM 106</td>
<td>Basic Inorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 261</td>
<td>Quantitative Methods in Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>or CHEM 106</td>
<td>Basic Inorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>or CHEM 112</td>
<td>General Chemistry Lab B</td>
<td></td>
</tr>
</tbody>
</table>

Math Courses Required

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 131</td>
<td>Applied Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 161</td>
<td>Calculus I</td>
<td></td>
</tr>
<tr>
<td>MATH 132</td>
<td>Applied Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>or MATH 162</td>
<td>Calculus II</td>
<td></td>
</tr>
</tbody>
</table>

MS Bioinformatics Fundamental Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOI 500</td>
<td>Advanced Bioinformatics</td>
<td>3</td>
</tr>
<tr>
<td>BIOI 501</td>
<td>Bioinformatics Seminar</td>
<td>1</td>
</tr>
<tr>
<td>BIOI 565</td>
<td>Exploring Proteins</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 465</td>
<td>Special Topics in Biochemistry</td>
<td></td>
</tr>
</tbody>
</table>

COMP 483 | Computational Biology | 4 |

Physics Courses Required

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 111</td>
<td>College Physics I Lec / Dis</td>
<td>3</td>
</tr>
<tr>
<td>or PHYS 121</td>
<td>College Physics I Lec/Dis</td>
<td></td>
</tr>
<tr>
<td>or PHYS 125</td>
<td>General Physics I Lec/Dis</td>
<td></td>
</tr>
<tr>
<td>PHYS 111L</td>
<td>College Physics Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 112</td>
<td>College Physics II Lec/Dis</td>
<td>1</td>
</tr>
<tr>
<td>or PHYS 122</td>
<td>College Physics II Lec/Dis</td>
<td></td>
</tr>
<tr>
<td>or PHYS 126</td>
<td>General Physics II Lec/Dis</td>
<td></td>
</tr>
<tr>
<td>PHYS 112L</td>
<td>College Physics Lab II</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Hours: 79-82

Required courses within the major also satisfy the following university Core Curriculum (https://catalog.luc.edu/undergraduate/university-requirements/university-core/) requirements: scientific literacy (6 credits) and quantitative analysis (3 credits).

Sample Course Schedules

These course schedules display how students may complete the bioinformatics major in addition to their university Core requirements in four years of study.

Sample Schedule B.S. Biology/ M.S. Bioinformatics Non-thesis Track

The below sequence of courses is meant to be used as a suggested path for completing coursework. An individual student’s completion of requirements depends on course offerings in a given term as well as the start term for a major or graduate study. Students should consult their advisor for assistance with course selection.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 101</td>
<td>General Biology I</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 111</td>
<td>General Biology I Lab</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 160</td>
<td>Chemical Structure and Properties</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 226</td>
<td>Organic Chemistry Lab B</td>
<td></td>
</tr>
<tr>
<td>CHEM 260</td>
<td>Quantitative Methods in Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>or CHEM 102</td>
<td>General Chemistry B Lecture/Discussion</td>
<td></td>
</tr>
<tr>
<td>or CHEM 106</td>
<td>Basic Inorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 261</td>
<td>Quantitative Methods in Chemistry Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>or CHEM 106</td>
<td>Basic Inorganic Chemistry</td>
<td></td>
</tr>
<tr>
<td>or CHEM 112</td>
<td>General Chemistry Lab B</td>
<td></td>
</tr>
</tbody>
</table>

Sample Schedule B.S. Biology/ M.S. Bioinformatics Non-thesis Track

The below sequence of courses is meant to be used as a suggested path for completing coursework. An individual student’s completion of requirements depends on course offerings in a given term as well as the start term for a major or graduate study. Students should consult their advisor for assistance with course selection.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 101</td>
<td>General Biology I</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 111</td>
<td>General Biology I Lab</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 160</td>
<td>Chemical Structure and Properties</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 161</td>
<td>Chemical Structure and Properties Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MATH 131</td>
<td>Applied Calculus I</td>
<td>3</td>
</tr>
</tbody>
</table>
CORE: College Writing Seminar
- **Hours**: 3

Spring
- **BIOL 102**: General Biology II
 - **Hours**: 3
- **BIOL 112**: General Biology II Lab
 - **Hours**: 1
- **CHEM 180**: Chemical Reactivity I
 - **Hours**: 3
- **CHEM 181**: Chemical Reactivity I Lab
 - **Hours**: 1
- **MATH 132**: Applied Calculus II
 - **Hours**: 3
- **CORE: Theology and Religious Studies Tier 1**
 - **Hours**: 3
- **CORE: Philosophical Knowledge Tier 1**
 - **Hours**: 3

Year 2

Fall
- **BIOL 282**: Genetics
 - **Hours**: 3
- **CHEM 260**: Quantitative Methods in Chemistry
 - **Hours**: 3
- **CAS Elective (CS course recommended)**
 - **Hours**: 3
- **CORE: Historical Knowledge Tier 1**
 - **Hours**: 3
- **CORE: Artistic Knowledge and Experience**
 - **Hours**: 3

Spring
- **BIOL 251**: Cell Biology
 - **Hours**: 3
- **CHEM 224**: Organic Chemistry B Lec/Disc
 - **Hours**: 3
- **CHEM 226**: Organic Chemistry Lab B
 - **Hours**: 1
- **CORE: Historical Knowledge Tier 2**
 - **Hours**: 3
- **CORE: Literary Knowledge Tier 1**
 - **Hours**: 3
- **CORE: Theology and Religious Studies Tier 2**
 - **Hours**: 3

Year 3

Fall
- **BIOL Elective Lab**
 - **Hours**: 1
- **BIOL 388**: Bioinformatics
 - **Hours**: 3
- **PHYS 111**: College Physics I Lec / Dis
 - **Hours**: 3
- **PHYS 111L**: College Physics Laboratory I
 - **Hours**: 1
- **CAS Elective 4**
 - **Hours**: 3
- **CAS Language Requirement 1**
 - **Hours**: 3
- **CORE: Philosophical Knowledge Tier 2**
 - **Hours**: 3

Spring
- **BIOL 265**: Ecology
 - **Hours**: 3
- **CHEM 361**: Principles of Biochemistry
 - **Hours**: 3
- **BIOL Elective Lab**
 - **Hours**: 1
- **STAT 335**: Introduction to Biostatistics
 - **Hours**: 3
- **PHYS 112**: College Physics II Lec/Disc
 - **Hours**: 3
- **PHYS 112L**: College Physics Lab II
 - **Hours**: 1
- **CAS Language Requirement 2**
 - **Hours**: 3

Year 4

Fall
- **BIOL Elective: Bioinformatics BIOL Elective 2**
 - **Hours**: 3
- **CAS Elective 5**
 - **Hours**: 3
- **CORE: Literary Knowledge Tier 2**
 - **Hours**: 3
- **CORE: Societal & Cultural Knowledge Tier 1**
 - **Hours**: 3
- **CORE: Ethics**
 - **Hours**: 3

Spring
- **STAT 437**: Quantitative Bioinformatics
 - **Hours**: 3
- **BIOL Elective: Bioinformatics BIOL Elective 2**
 - **Hours**: 3
- **Bioinformatics Elective 3**
 - **Hours**: 3
- **CORE: Societal & Cultural Knowledge Tier 2**
 - **Hours**: 3

Year 5

Fall
- **Bioinformatics Elective 3**
 - **Hours**: 3
- **BIOI 565**: Exploring Proteins
 - **Hours**: 3
- **BIOI 498**: Bioinformatics Internship
 - **Hours**: 1

Spring
- **BIOI 500**: Advanced Bioinformatics
 - **Hours**: 3
- **BIOI 501**: Bioinformatics Seminar
 - **Hours**: 1
- **COMP 483**: Computational Biology
 - **Hours**: 4
- **Bioinformatics Elective 3**
 - **Hours**: 3

Sample Schedule B.S. Biology/ M.S. Bioinformatics Thesis Track

The below sequence of courses is meant to be used as a suggested path for completing coursework. An individual student’s completion of requirements depends on course offerings in a given term as well as the start term for a major or graduate study. Students should consult their advisor for assistance with course selection.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 101: General Biology I</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BIOL 111: General Biology I Lab</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CHEM 160: Chemical Structure and Properties</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CHEM 161: Chemical Structure and Properties Laboratory</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MATH 131: Applied Calculus I</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

1. Required courses for GPA requirement for admission into B.S./M.S. program.
2. Courses which could be applied towards both the B.S. and M.S. degrees.
3. Required of the M.S. degree, totaling 30 credit hours
5. Computer Science course, COMP 231 Data Structures & Algorithms for Informatics, recommended
CORE: College Writing Seminar
3

Hours
14

Spring

Fall
- BIOL 102 General Biology II 3
- BIOL 112 General Biology II Lab 1
- CHEM 180 Chemical Reactivity I 3
- CHEM 181 Chemical Reactivity I Lab 1
- MATH 132 Applied Calculus II 3
- CORE: Theology and Religious Studies Tier 1 3
- CORE: Philosophical Knowledge Tier 1 3

Hours
17

Year 2

Fall
- BIOL 282 Genetics 3
- BIOL 283 Genetics Laboratory 1
- CHEM 240 Chemical Reactivity II 3
- CHEM 241 Chemical Reactivity II Laboratory 1
- CORE: Historical Knowledge Tier 1 3
- CORE: Artistic Knowledge and Experience 3
- CAS Elective (CS course recommended) 3

Hours
17

Spring
- BIOL 251 Cell Biology 3
- CHEM 260 Quantitative Methods in Chemistry 3
- CHEM 261 Quantitative Methods in Chemistry Laboratory 1
- CORE: Historical Knowledge Tier 2 3
- CORE: Literary Knowledge Tier 1 3
- CORE: Theology and Religious Studies Tier 2 3

Hours
16

Year 3

Fall
- BIOL Elective Lab 1
- BIOL 388 Bioinformatics 3
- PHYS 111 College Physics I Lec / Dis 3
- PHYS 111L College Physics Laboratory I 1
- CAS Elective 3
- CAS Language Requirement 1 3
- CORE: Philosophical Knowledge Tier 2 3

Hours
17

Spring
- CHEM 361 Principles of Biochemistry 3
- BIOL Elective Lab 1
- STAT 335 Introduction to Biostatistics 3
- PHYS 112 College Physics II Lec/Disc 3
- PHYS 112L College Physics Lab II 1
- CAS Language Requirement 2 3

Apply for B.S./M.S. Program

Hours
14

Year 4

Fall
- UNIV 370 Responsible Conduct in Research and Scholarship 0
- BIOI 494 Bioinformatics Research Design 1
- BIOI Elective: Bioinformatics BIOI Elective 3
- CAS Elective 3
- CORE: Literary Knowledge Tier 2 3
- CORE: Societal & Cultural Knowledge Tier 1 3
- CORE: Ethics 3

Hours
16

Spring
- BIOI 265 Ecology 3
- BIOI 501 Bioinformatics Seminar 1
- STAT 437 Quantitative Bioinformatics 3
- BIOI Elective: Bioinformatics BIOI Elective 3
- CORE: Societal & Cultural Knowledge Tier 2 3

Hours
13

Year 5

Fall
- BIOI 565 Exploring Proteins 3
- BIOI 499 Bioinformatics Research 8

Hours
11

Spring
- BIOI 500 Advanced Bioinformatics 3
- COMP 483 Computational Biology 4
- BIOI 595 Thesis Supervision 1

Hours
8

Total Hours
143

1. Required courses for GPA requirement for admission into B.S./M.S. program.
2. Courses required of the M.S. degree, totaling 30 credit hours.
3. Courses which could be applied towards both the B.S. and M.S. degrees

Guidelines for Accelerated Bachelor’s/Master’s Programs

Terms
- **Accelerated Bachelor’s/Master’s programs:** In this type of program, students share limited credits between their undergraduate and graduate degrees to facilitate completion of both degrees.
- **Shared credits:** Graduate level credit hours taken during the undergraduate program and then applied towards graduate program requirements will be referred to as Shared credits.

Admission Requirements
Accelerated Bachelor's/Master's programs are designed to enhance opportunities for advanced training for Loyola’s undergraduates. Admission to these programs must be competitive and will depend upon a positive review of credentials by the program’s admissions committee.
Accordingly, the admission requirements for these programs may be higher than those required if the master’s degree were pursued entirely after the receipt of a bachelor’s degree. That is, programs may choose to have more stringent admissions requirements in addition to those minimal requirements below.

Requirements:

- Declared appropriate undergraduate major,
- By the time students begin taking graduate courses as an undergraduate, the student has completed approximately 90 credit hours, or the credit hours required in a program that is accredited by a specialty organization,1
- A minimum cumulative GPA for coursework at Loyola that is at or above the program-specific requirements, a minimum major GPA that is at or above the program-specific requirements, and/or appropriate designated coursework for evaluation of student readiness in their discipline.2

Students not eligible for the Accelerated Bachelor’s/Master’s program (e.g., students who have not declared the appropriate undergraduate major) may apply to the master’s program through the regular admissions process. Students enrolled in an Accelerated Bachelor’s/Master’s program who choose not to continue to the master’s degree program upon completion of the bachelor’s degree will face no consequences.3

Ideally, a student will apply for admission (or confirm interest in proceeding towards the graduate degree in opt-out programs) as they approach 90 credit hours. Programs are encouraged to begin advising students early in their major so that they are aware of the program and, if interested, can complete their bachelor’s degree requirements in a way that facilitates completion of the program. Once admitted as an undergraduate, Program Directors should ensure that students are enrolled using the plan code associated with the Accelerated Bachelor’s/Master’s program. Using the plan code associated with the Accelerated Bachelor’s/Master’s program will ensure that students may be easily identified as they move through the program. Students will not officially matriculate into the master's degree program and be labeled as a graduate student by the university, with accompanying changes to tuition and Financial Aid (see below), until the undergraduate degree has been awarded. Once admitted to the graduate program, students must meet the academic standing requirements of their graduate program as they complete the program curriculum.

1 Programs that have specialized accreditation will adhere to the admissions criteria provided by, or approved by, their specialized accreditors.
2 The program will identify appropriate indicators of student readiness for graduate coursework (e.g., high-level performance in 300 level courses). Recognizing differences between how majors are designed, we do not specify a blanket requirement.
3 If students choose not to enroll in the Accelerated Bachelor’s/Master’s program, they still must complete all of the standard requirements associated with the undergraduate degree (e.g., a capstone).

Curriculum

Level and progression of courses. The Accelerated Bachelor’s/Master’s programs are designed to be competitive and attractive to our most capable students. Students admitted to Accelerated Bachelor’s/Master’s programs should be capable of meeting graduate level learning outcomes. Following guidance from the Higher Learning Commission, only courses taken at the 400 level or higher (including 300/400 level courses taken at the 400 level) will count toward the graduate program.1,2

Up to 50% of the total graduate level credit hours, required in the graduate program, may come from 300/400 level courses where the student is enrolled in the 400 level of the course. Further, at least 50% of the credit hours for the graduate program must come from courses that are designed for and restricted to graduate students who have been admitted to a graduate program at Loyola (e.g., enrolled in plan code that indicates the Accelerated Bachelor’s/Master’s program, typically ending with the letter “D”).3

In general, graduate level coursework should not be taken prior to admission into the Accelerated Bachelor’s/Master’s program. Exceptions may be granted for professional programs where curriculum for the Accelerated Bachelor’s/Master’s program is designed to begin earlier. On the recommendation of the program’s Graduate Director, students may take one of their graduate level courses before they are admitted to the Accelerated Bachelor’s/Master’s program if they have advanced abilities in their discipline and course offerings warrant such an exception.4

Undergraduate degree requirements outside of the major are in no way impacted by admission to an Accelerated Bachelor’s/Master’s program.5

Shared credits. Undergraduate courses (i.e., courses offered at the 300 level or below) cannot be counted as shared credits nor count towards the master’s degree. Up to 50% of the total graduate level credit hours, required in the graduate program, may be counted in meeting both the undergraduate and graduate degree requirements. Of those shared credits, students in an Accelerated Bachelor’s/Master’s program should begin their graduate program with the standard introductory course(s) for the program whenever possible. So that students may progress through the Accelerated Bachelor’s/Master’s program in a timely manner, undergraduate programs are encouraged to design their curriculum such that a student can complete some required graduate credit hours while completing the undergraduate degree. For instance, some of the graduate curriculum should also satisfy electives for the undergraduate major.

The program’s Graduate Director will designate credit hours to be shared through the advising form and master’s degree conferral review process. Shared credit hours will not be marked on the undergraduate record as having a special status in the undergraduate program. They will be included in the student’s undergraduate earned hours and GPA. Graduate credit hours taken during the undergraduate program will not be included in the graduate GPA calculation.

1 If students wish to transfer credits from another university to Loyola University Chicago, the program’s Graduate director will review the relevant syllabus(es) to determine whether it meets the criteria for a 400 level course or higher.
2 Programs with specialized accreditation requirements that allow programs to offer graduate curriculum to undergraduate students will conform to those specialized accreditation requirements.
3 In rare cases, the Graduate Director may authorize enrollment in a 400-level course for a highly qualified and highly motivated undergraduate, ensuring that the undergraduate’s exceptional participation in the graduate class will not diminish in any way the experience of the graduate students regularly enrolled.
4 For example, if a particular course is only offered once every 2-3 years, and a student has demonstrated the necessary ability to be successful, the Graduate Director may allow a student to take a graduate level course to be shared prior to the student being formally admitted to the graduate program. See, also, footnote 4.
Students should not, for example, attempt to negotiate themselves out of a writing intensive requirement on the basis of admission to a graduate program.

Graduation
Degrees are awarded sequentially. All details of undergraduate commencement are handled in the ordinary way as for all students in the School/College/Institute. Once in the graduate program, students abide by the graduation deadlines set forth by the graduate program. Students in these programs must be continuously enrolled from undergraduate to graduate degree program unless given explicit permission by their program for a gap year or approved leave of absence.