BIOLOGY

About Us

The Department of Biology has extensive resources to support superior teaching and research in all the major areas of contemporary biological sciences to prepare students for medical school, other graduate or professional studies, teaching, or careers in industry or government.

The department is housed in the state-of-the-art Michael R. and Marilyn C. Quinlan Life Sciences Education and Research Center. This innovative facility features modern teaching and research labs, where students learn to operate the latest equipment used in scientific experiments, and engage in faculty-guided research; an artificial stream, the only one of its kind in the Chicago area; and a "green roof," which resembles a native Illinois prairie.

In addition, other greenhouses provide students with a convenient location for field research, and the indoor environments make experimentation possible no matter what the weather conditions. The building itself is energy efficient with sunshades, and the green roof holds water to help prevent street flooding. With Lake Michigan just steps away, students have another natural resource at their fingertips.

Students have access to the Cudahy Library collection, which includes more than 200,000 volumes, and subscriptions to more than 300 biological journals.

Undergraduate Programs

- Biology (BS) (https://catalog.luc.edu/undergraduate/arts-sciences/biology/biology-bs/)
- Biology Minor (https://catalog.luc.edu/undergraduate/arts-sciences/biology/biology-minor/)
- Biology with Ecology Emphasis (BS) (https://catalog.luc.edu/undergraduate/arts-sciences/biology/biology-ecology-emphasis-bs/)
- Biology with Molecular Biology Emphasis (BS) (https://catalog.luc.edu/undergraduate/arts-sciences/biology/biology-molecular-biology-emphasis-bs/)
- Biology/Bioinformatics (BS/MS) (https://catalog.luc.edu/undergraduate/accelerated-bachelors-masters-program/biology-bioinformatics-bs-ms/)

Undergraduate Policies and Procedures

Please see Undergraduate Policies and Procedures (https://catalog.luc.edu/undergraduate-academic-standards-regulations/) for academic policies that supersede those of academic units within the University.

Biology (BIOL)

BIOL 101 General Biology I (3 Credit Hours)

Fundamental principles of Biology including: introduction to the scientific method, basic biological chemistry; cell structure and function; energy transformations; mechanisms of cell communication; cellular reproduction; and principles of genetics.

Interdisciplinary Option: Bioethics, Bioinformatics, Forensic Science

Course equivalencies: BIOL 101 / BIOL 124

Outcomes:

Students will be able to demonstrate understanding of the historical foundations, methodologies employed, general architecture and functioning of the cell - the basic unit of life

BIOL 102 General Biology II (3 Credit Hours)

Pre-requisites: BIOL 101 and 111

A continuation of BIOL 101. Fundamental principles of Biology including: evolutionary theory; general principles of ecology; study of plant structure and function; and comparative animal physiology.

Interdisciplinary Option: Bioethics, Forensic Science

Course equivalencies: BIOL 102 / BIOL 125

Outcomes:

Students will be able to demonstrate an understanding of the fundamental principles of ecology and evolution, as well as the anatomy and physiology of representative plant and animal phyla

BIOL 110 Liberal Arts Biology (3 Credit Hours)

Pre-requisite: ENVS 101 or ENVS 137. No requirement for students with a declared major or minor in the Department of Anthropology, Department of Biology, Department of Chemistry, Department of Environmental Science, Department of Physics, Bioinformatics, Forensic Science or Neuroscience. Liberal Arts Biology is a second tier core course in the area of Scientific Literacy. It covers fundamental principles of biological sciences at a level for non-science majors. The focus of the course will vary depending on expertise of the instructor. All instructors will address the same fundamental principles.

Knowledge Area: Tier 2 Scientific Knowledge

Outcomes:

Students understand the scientific method, diversity of life, classification of organisms, cell structure and function, the chromosomal and molecular basis of inheritance, and organ systems of the human body

BIOL 111 General Biology I Lab (1 Credit Hour)

Complements General Biology I lecture material through observation, experimentation, and when appropriate, dissection of representative organisms. Physical and chemical phenomena of life as well as systematics and comparative anatomy and physiology of selected organisms will be examined.

Interdisciplinary Option: Bioethics, Forensic Science

Course equivalencies: BIOL 111/ACBIO 111

Outcomes:

Students will be able to demonstrate an understanding of the diversity of living organisms, including comparisons in cell structure and function, and comparative organismal evolution and ecology
BIOL 112 General Biology II Lab (1 Credit Hour)
Pre-requisites: BIOL 101 and BIOL 111
Complements General Biology II lecture material through observation, experimentation, and when appropriate, dissection of representative organisms. Physical and chemical phenomena of life as well as systematics and comparative anatomy and physiology of selected organisms will be examined.
Interdisciplinary Option: Bioethics, Forensic Science
Outcomes:
Students will be able to demonstrate an understanding of the diversity of living organisms, including comparisons in cell structure and function, and comparative organismal evolution and ecology

BIOL 195 Special Topics in Biology (1-4 Credit Hours)
Special Topics - Specific areas of study in the biological sciences.

BIOL 205 Plant Biology Lect/Lab (4 Credit Hours)
Pre-requisites: BIOL 102 and BIOL 112
Lecture and laboratory. Survey of the principles of botany including development and reproduction, structure, phylogeny and metabolism.
Outcomes:
Students will understand the basic morphology of plants; utilize morphology in the identification of local plants; understand the anatomy of plants; understand the relationship between anatomy and basic physiology; recognize that differences in physiological function allow different plants to be found in specific environments; appreciate the diversity of organisms called "plants"

BIOL 210 Laboratory Techniques (2 Credit Hours)
Lab sessions designed to prove a firm foundation in basic techniques and procedures, use of equipment and apparatus; keeping a lab notebook and in data collection and treatment.
Outcomes:
Students will acquire basic skills needed to work in a research laboratory

BIOL 215 Ornithology (3 Credit Hours)
An introduction to the biology of birds including the topics of anatomy, physiology, behavior, ecology and evolution. Includes some field trips to learn how to identify species and to collect behavioral information.
Course equivalencies: BIOL 215/ENVS 215
Outcomes:
Students will demonstrate an understanding of the biology of birds and be able to identify some of the commoner species of birds in our area

BIOL 240 Psych & Biol of Perception (3 Credit Hours)
Pre-requisites: PSYC 101; For Biology majors: BIOL 102, BIOL 112, and PSYC 101 Introduction to the study of sensory systems, especially vision and audition, emphasizing historical development of the field, multidisciplinary scientific approaches; recent research and theory on the mechanisms of seeing and hearing; and applications of research to real-world problems
BIOL 240 is cross-listed with PSYC 240.
Interdisciplinary Option: Neuroscience
Course equivalencies: X-PSYC240/BIOL240

BIOL 242 Human Structure and Function I (4 Credit Hours)
Lecture, laboratory, and demonstrations. Organization of the human body from the cellular to the organismal level. Anatomy of body systems and their physiology related to 1) support and movement (integumentary, skeletal and muscular systems) and integration and control (nervous and endocrine systems). Dissection of representative organs is required. Prerequisites are BIOL 101, 102, 111,112 and CHEM 101, 102, 111, 112. Pre-requisites: (BIOL 102 and 112) and [(CHEM 102 and 112) or CHEM 106 or CHEM 180]
Outcomes:
Students will be able to demonstrate knowledge of human anatomy at the microscopic and gross levels; They will be able to correlate structure and function and will have a firm understanding of the organizing principle of human physiology, homeostasis and explain the role of the nervous and endocrine systems in its maintenance

BIOL 243 Human Structure and Function II (4 Credit Hours)
Pre-requisites: BIOL 242 Lecture, laboratory and demonstrations A continuation of BIOL 242. Anatomy of body systems and their physiology related to 1) regulation and maintenance (cardiovascular, lymphatic respiratory, digestive and urinary systems) and reproduction and development (male and female reproductive systems.) Dissection of representative organs is required. Prerequisites are BIOL 101, 102, 111, 112, BIOL 242 and CHEM 101, 102, 111, 112.
Outcomes:
Students will be able to demonstrate a comprehensive integrated knowledge and understanding of human anatomy and physiology at all levels

BIOL 251 Cell Biology (3 Credit Hours)
Pre-requisites: Biophysics majors ONLY: (BIOL 101 and 111) and (CHEM 102 or CHEM 106 or CHEM 180); All other majors: BIOL 102 and 112) and [(CHEM 102 and 112) or CHEM 106 or CHEM 180] This course covers basic molecular and cellular studies of living organisms, emphasizing the relationships between subcellular structures and biochemical and physiological functions of cells.
Outcomes:
Students will become familiar with a wide range of cell biological principles and experimental approaches that led to important discoveries, gain an appreciation of the scientific method, and learn about the goals of modern cell biology research

BIOL 252 Cell Biology Laboratory (1 Credit Hour)
Co-requisites: BIOL 251
Pre or Laboratory experiences designed to explore relationships between structure and function of subcellular components.
Outcomes:
Working knowledge of a variety of techniques utilized in the cell biology laboratory

BIOL 265 Ecology (3 Credit Hours)
Pre-requisites: BIOL 102, BIOL 112; CHEM 102 or CHEM 106 or CHEM 180 Outcomes: Students will understand the fundamental principles governing the interactions of organisms and their environment at the population, community, and ecosystem levels Relationships of organisms to their environment and to each other at the organism, population, community, and ecosystem levels. Interdisciplinary Option: Environmental Studies
BIOL 266 Ecology Laboratory (1 Credit Hour)
Co-requisites: BIOL 265
Pre or Laboratory and field experience designed to illustrate the principles of ecology and to give students experience in collecting, processing, and analyzing data. Field trips required.
Interdisciplinary Option: Environmental Studies
Course equivalencies: BIOL266/ESP 266
Outcomes:
Students will understand the methodology and use techniques in studying interactions of organisms to the environment and to each other at the organism, population, community, and ecosystem levels

BIOL 280 Evolution of Human Disease (3 Credit Hours)
Pre-requisites: BIOL 102
The complex interaction between humans and pathogens is explored throughout time, with particular emphasis on the role and impact of human biology, human culture, and changing environments. Interdisciplinary Option: Bioethics
Course equivalencies: X-ANTH280/BIOL280/BIET280
Outcomes:
Students will be able to demonstrate understanding of the human immunological system, competing paradigms of human health, the processes and mechanisms of biological evolution, the pathogeneses of specific diseases, and the archaeological, paleopathological, paleodemographic, and historical data used to explore the evolution of disease

BIOL 281 Evolution of the Human Diet (3 Credit Hours)
Pre-requisites: ANTH 101 or any 100-level Biology course Outcomes:
Students will identify the role food has played throughout the 6-7 million years of human evolution, and its significance in terms of climate change variability, evolutionary adaptations and contemporary inequality.
This interdisciplinary course explores the evolution of the human diet utilizing a biocultural perspective. The complex interplay between our diet, biology, and culture is examined through energy acquisition, primate and hominin nutrition, the Agricultural Revolution and Industrialization on human health, food sustainability, and nutritional inequality.
Course equivalencies: X-BIOL 281/ANTH 281

BIOL 282 Genetics (3 Credit Hours)
This course surveys principles and processes of genetic inheritance, gene expression, molecular biology, developmental, quantitative, population and evolutionary genetics. Pre-requisites: For Bioinformatics and Biophysics Majors ONLY: BIOL 101; CHEM 102 or CHEM 106 or CHEM 180; For all other majors: BIOL 102, 112; CHEM 102 or CHEM 106 or CHEM 180.
Interdisciplinary Option: Bioinformatics, Forensic Science
Outcomes:
Students will develop knowledge and awareness of the genetic bases of modern biology; They will understand Mendelian principles of inheritance, chromosome and DNA structure and replication, gene expression, molecular biology, genetic bases of development and other biological processes, and quantitative, population and evolutionary genetics

BIOL 283 Genetics Laboratory (1 Credit Hour)
Co-requisites: BIOL 282
Pre or Experiments and demonstrations to illustrate chromosomal structures and transmission, molecular biology, gene linkage, gene frequencies and variation. Interdisciplinary Option: Bioinformatics, Forensic Science
Outcomes:
Students will develop technical skills and ability to interpret data from a variety of types of genetics experiments

BIOL 284 Behavioral and Cognitive Neuroscience (3 Credit Hours)
Pre-requisites: BIOL/PSYC 202, For Biology Majors: BIOL 102 & 112
Overview of topics and methodologies used in behavioral and cognitive neuroscience including: attention, learning and memory, language, reasoning, decision making, intelligence, emotions, social cognition, and consciousness. BIOL 284 is cross-listed with PSYC 382.
Interdisciplinary Option: Neuroscience
Course equivalencies: X-PSYC 382/BIOL 284
Outcomes:
Students will understand theories regarding brain mechanisms, underlying mental events and the technologies used for studying these mechanisms

BIOL 296 Introduction to Research (1 Credit Hour)
Pre-requisites: BIOL 102, 112; Permission of the instructor; Biology Core highly recommended
Students will begin reading the literature in the field of their mentor, conduct experiments designed by the mentor, and give a presentation on their work or studies, in preparation for upper level undergraduate research. This course satisfies the Engaged Learning requirement.
Outcomes:
Students will develop critical reading skills and become familiar with basic lab techniques in the area of their mentor

BIOL 302 General Microbiology Lec/Lab (4 Credit Hours)
Pre-requisites: BIOL 251 and BIOL 282 Lecture and laboratory
Fundamental concepts of microbial life, physiology, and metabolism. Outcomes:
Students will learn the differences between the 3 domains of life and will comprehend the biochemistry, morphology, growth characteristics, structure and ecology of microbes

BIOL 303 Seminar in Neuroscience (1 Credit Hour)
Pre-requisites: NEUR 101 with a grade of C- or better
The seminar introduces students to the interdisciplinary nature of modern neuroscience with an emphasis on the various neuroscience research activities that take place at Loyola University Chicago, and reviews current neuroscience research topics. BIOL 303 is cross-listed with NEUR 300.
Interdisciplinary Option: Neuroscience
Course equivalencies: X-PSYC 382/BIOL 284
Outcomes:
Students will demonstrate understanding of the interdisciplinary and multidisciplinary nature of modern neuroscience, and the research questions and experimental approaches used at the Lakeshore and Medical Center campuses

BIOL 304 Intro to Developmental Biology (3 Credit Hours)
Pre-requisites: BIOL 251
The analysis of developmental processes such as; fertilization, embryonic cleavage, cell determination and cell differentiation in selected species. Emphasis will be on experiments that reveal how these processes are controlled at the molecular and cellular levels. Outcomes:
Students will become familiar with a wide range of developmental biology principles and experimental approaches that led to important discoveries, gain an appreciation of the scientific method, and learn about the goals of modern developmental biology research
Biol 307 Biology of Stem Cells (3 Credit Hours)
Pre-requisites: BIOL 251 and BIOL 282
Outcomes: Students will be able to read primary research articles, describe different stem cell types and therapeutic uses, and consider the ethical implications of stem cell research and therapies.

Stem cell research represents an exciting area of biology. This course will cover the early discoveries that launched the field of stem cell biology, the different types of stem cells that exist, potential therapeutic uses of stem cells, and the ethical implications of these discoveries and therapies.

Biol 310 Categorical Data Analysis (3 Credit Hours)
Pre-requisites: STAT 203 or STAT 335
An introduction to modern-day extensions of simple linear regression and ANOVA to the chi-square test including logistic regression and log-linear modelling techniques based on generalized linear models.
Methods for matched-pair, small datasets, ordinal and multi-category data also discussed. This course focuses on applications using real-life data sets, and uses popular software packages.

Biol 313 Lab in Psychobiology (3 Credit Hours)
Pre-requisites: (BIOL/STAT 335 or PSYC 304) and (NEUR 101, PSYC/BIOL 240, or PSYC 382/BIOL 284); OR for PSYC-BS and Cognitive/Behavioral Neuroscience majors: PSYC 306 and (NEUR 101, PSYC/BIOL 240, or PSYC 382/BIOL 284) Minimum grades of C- A 'hands on' experience with the instrumentation, measurement techniques and experimental designs used in electrophysiological studies of nervous system function.

BIOL 313 is cross-listed with PSYC 311.

Interdisciplinary Option: Neuroscience
Course equivalencies: X-PSYC311/BIO313

Biol 315 Introductory Immunology Lec/Lab (4 Credit Hours)
Pre-requisites: BIOL 251 and BIOL 282
The study of the nature and molecular basis of immune responses.
History and vocabulary of immunology; experiments involving immune recognition and destruction; theories regarding self-tolerance and immunological diseases.

Outcomes: Students will learn the morphology and histology of the cells involved in an immune response, as well as how the cells develop and the molecular mechanisms used to recognize and eliminate non-self material. The students will become familiar with the evasion strategies of pathogens and the consequences associated with either hyper or hypo-responsiveness.

Biol 316 Limnology Lec/Lab (4 Credit Hours)
Pre-requisites: BIOL 265 and CHEM 102 or CHEM 106 or CHEM 180
Outcomes: Students will learn methods of sampling and analyzing physical, chemical and biological factors in lake and stream ecosystems, and how to integrate these complex data sets to answer ecosystem process-level questions. Students will learn to evaluate the trophic status and health of a lake by the end of the course.

An introduction to the structure and function of lake and stream ecosystems. The course includes the integration of physical, chemical, and biological parameters. Laboratories include weekend field trips to aquatic habitats.

Biol 317 Models of Human Disease (3 Credit Hours)
Pre-requisites: BIOL 251 and BIOL 282
Outcomes: Students will gain knowledge about human diseases and techniques used to model aspects of those diseases in the laboratory.

Biol 318 General Virology (3 Credit Hours)
Pre-requisites: BIOL 251 and BIOL 282
Outcomes: Students will be able to demonstrate detailed understanding of basic viral structure, basic viral replication/infecction cycles, and specific examples of viruses and their infection strategies.

This course covers the molecular details of viral infection and the diverse strategies used by these pathogens to invade cells and avoid immune clearance. The focus will be on mammalian viruses of biomedical relevance.

Course equivalencies: BIL 318 / BIL 218

Biol 319 Evolution (3 Credit Hours)
Pre-requisites: BIOL 282, BIOL 265 recommended
This course focuses on analysis of processes and patterns of evolution.
Topics include population genetic principles, fossil patterns and geologic ages, phylogenetic analysis of relationships of species, experimental approaches to evolutionary questions, and evolutionary perspectives on human biology and relationships.

Outcomes: Students will develop knowledge and awareness of evolutionary processes and patterns, the evidence for them, and how evolutionary hypotheses are tested experimentally. They will develop an appreciation of the primary literature through reading and discussing research articles.

Biol 320 Animal Behavior (3 Credit Hours)
Pre-requisites: ANTH 101 or ANTH 103; or BIOL 102 & BIOL 112
This course examines the biological basis of animal behavior including function and evolution of behavior patterns. Mechanisms and the adaptive significance of behaviors are examined and analyzed. BIOL 320 is cross-listed with ANTH 320.

Interdisciplinary Option: Environmental Studies, Neuroscience
Course equivalencies: X-ANTH320/BIOL320/ESP 320

Outcomes: Students will have an understanding of both proximate and ultimate causes of a broad array of behaviors in animals and their implications for the life histories of those animals.

Biol 323 Comparative Anatomy Lec/Lab (4 Credit Hours)
Pre-requisites: BIOL 251, BIOL 282
A study of homologous systems and vertebrate phylogeny in both lecture and lab.

No course description is available.

Outcomes: Students will understand the evolutionary relationships and processes that are involved in the development of vertebrate anatomy.
BIOL 325 Primatology-Behavior & Ecology (3 Credit Hours)
Pre-requisites: ANTH 101 or any 100-level Biology course
Outcomes: Students will be able to describe the taxonomic diversity of non-human primates and explain the impact of biological, evolutionary, and ecological factors on primate behavior.
This course examines primate behavior and ecology from a comparative and evolutionary perspective. Students will be introduced to the diversity across taxonomic groups within the Order Primates. Through class discussion and observation, students will explore key issues in primate studies. Students will develop and apply skills in primate observation.
Course equivalencies: X-ANTH325/BIOL325/ESP 325

BIOL 326 Human Osteology Lec/Lab (4 Credit Hours)
This course focuses on developing a deep understanding of the human skeleton and ways in which biological anthropologists and forensic anthropologists use this knowledge to explore human biological diversity. Through hands-on exercises and class discussion, students will build analytical skills that are foundational to many techniques used by professionals and will appreciate the complex ethical considerations inherent to the fields of biological and forensic anthropology.
Pre-requisites: BIOL 102 and BIOL 112; ANTH 101 or ANTH 103.
Interdisciplinary Option: Forensic Science
Course equivalencies: X-ANTH326/BIOL326
Outcomes: Students will be able to demonstrate superior knowledge of skeletal anatomy, analyses of skeletal remains from archaeological contexts, and apply current techniques designed to understand and explore human variation, stature, ancestry, age-at-death, sex, and pathological conditions.

BIOL 327 Wetland Ecology (4 Credit Hours)
Pre-requisites: BIOL 265 An introduction to the study of wetlands habitats
This course includes discussion of physical and chemical factors, biota, production and community dynamics. Laboratories include several field trips to regional wetland habitats.
Interdisciplinary Option: Environmental Studies
Course equivalencies: BIOL327/ESP 327
Outcomes: Students will understand the functioning of wetlands, become aware of the variety of wetlands and become familiar with wetland biota, especially wetland plants.

BIOL 328 Conservation Biology (3 Credit Hours)
Pre-requisites: BIOL 265 This course explores species diversity, natural and human induced extinctions, environmental ethics, and conservation practices being developed at the population, community, and ecosystem levels.
No course description is available
Course equivalencies: X-BIOL328/ESP 330
Outcomes: Students will be able to describe conservation strategies being used by institutions around the world and understand the ecological theory that supports those strategies.

BIOL 329 Winter Ecology (3 Credit Hours)
Pre-requisites: BIOL 265 or permission of instructor
The goal for Winter Ecology is to teach you about ecosystems in winter by immersing you in the winter environment at LUREC during J-term. Topics include the habitats on, in, and under snow, the morphological, physiological, life cycle modifications of temperate plants, and the winter adaptations of birds.
Course equivalencies: X-ENVS 319/BIOL 329
Outcomes: Students will gain understanding of habitats and organisms present during winter in temperate ecosystems and gain experience with field techniques employed when studying these ecosystems.

BIOL 330 Global Change Biology (3 Credit Hours)
Pre-requisites: BIOL 265 or ENVS 280
Outcomes: Learn global element cycles that drive biological processes; Read, critique, and discuss primary scientific literature.
Human activities are changing our planet to such an extent that scientists have proposed we are in a new geological epoch, the “Anthropocene.” Through lectures, discussions, and group projects we will examine key elements of global change including biodiversity loss, land-use alterations, climate change, and pollution.

BIOL 335 Intro to Biostatistics (3 Credit Hours)
Pre-requisites: BIOL 102, MATH 132 or MATH 162 (as pre-requisite or co-requisite) or MATH 162A; Students may take MATH 162 as a prerequisite for STAT/BIOL 335 or take it concurrently as a corequisite with STAT/BIOL 335; For Bioinformatics Majors: only BIOL 101, MATH 132 or MATH 162 (as pre-requisite or co-requisite) or MATH 162A
An introduction to statistical methods used in designing biological experiments and in data analyses. Topics include probability and sampling distribution, designed biological experiments and analysis of variance, regression and correlation, stochastic processes, and frequency distributions. Computer laboratory assignments with biological data.
Interdisciplinary Option: Forensic Science
Course equivalencies: X-BIOL335/STAT335

BIOL 336 Advanced Biostatistics (3 Credit Hours)
Pre-requisites: STAT 203 or STAT 335 This course provides an overview of advanced topics in applied statistics with particular application in biology and medicine, including the interpretation of Minitab, SAS and S-Plus computer output.
No course description is available
Course equivalencies: X-STAT336/BIOL336
Outcomes: Students interested in applied statistical methods will obtain skill in experimental design, linear regression, categorical data analysis and logistic analysis, nonlinear regression, bioassay and drug synergy methods, as well as multivariate and survival statistical methods.

BIOL 337 Quantitative Methods in Bioinformatics (3 Credit Hours)
Pre-requisites: STAT 203 or STAT 335 This course develops the mathematical and statistical methods necessary to analyze and interpret genomic and proteomic data, including signal analysis, sequence alignment methods, data-base search methods useful in bioinformatics and data mining.
No course description is available
Interdisciplinary Option: Bioinformatics
Course equivalencies: X-STAT337/BIOL337/ESP337
Outcomes: Students will obtain the quantitative skills used in BLAST, including inference, stochastic processes and hidden Markov models, random walks, microarray analysis and biological sequence analysis.
BIOL 340 Natural History of Belize (3 Credit Hours)
This Study Abroad field course is designed to build on the foundations learned in Ecology, Environmental Science, and Anthropology classes by examining the biodiversity and tropical ecosystems of Belize, by exploring the cultural traditions of some of its peoples, particularly the Mayans; and learn how local communities are involved in protecting and sustaining ecological and natural sites through community based conservation and sustainability practices Enrollment Conditions: For Environmental Science or Environmental Studies Majors/Minors: ENVS 137 For Biology Majors/Minors: BIOL 102 & 112 For Anthropology or International Studies Majors/Minors: Junior or Senior Standing
Course equivalencies: X - ENVS 340 /BIOL 340
Outcomes:
Provide a working understanding of the structure, function, and ecology of tropical ecosystems; their importance to local communities; and the social dimensions of environmental issues, especially those related to justice.

BIOL 341 Histology Lec/Lab (4 Credit Hours)
Pre-requisites: BIOL 251 and BIOL 282
This course examines the microscopic anatomy of the four basic adult tissue types and how they are arranged and utilized in the construction of the major vertebrate organ systems.
Outcomes:
The major learning objectives for this course are (1) to become familiar with the gross and microscopic anatomy of cells, tissues and organs and (2) to understand how these anatomical features correlate with specific physiological functions.

BIOL 342 Human Anatomy (4 Credit Hours)
Pre-requisites: BIOL 242, BIOL 243, BIOL 251, BIOL 282; CHEM 222 or CHEM 224 or (CHEM 240 pre-req and CHEM 260 co-req)
A mixed lecture and laboratory course providing an in-depth look at the human body at the level of gross anatomy.
Interdisciplinary Option: Forensic Science
Outcomes:
Students will acquire an advanced understanding of the structure and relationships of major organ systems in the human body.

BIOL 346 Biology of Women (3 Credit Hours)
This course focuses on the anatomy and physiology of women at different and critical times in their life span. This course also addresses social issues that effect women at different points in their life. Topics include the evolution of sex, gender differentiation, and reproduction.
Interdisciplinary Option: Women & Gender Studies
Course equivalencies: BIOL346/WOST346/ANTH346/WSGS
Outcomes:
Students will learn about the biology of the female system, and how it changes with age; Students will also learn through discussions and guest lectures the interplay between society, medicine and gender.

BIOL 347 Bird Conservation and Ecology (3 Credit Hours)
Pre-requisites: ENVS 137 or BIOL 102
Outcomes: Students will become skilled in critical reasoning and some bird monitoring techniques, and demonstrate an understanding of the many facets of bird conservation. This engaged-learning course provides an introduction to the theory and practice of avian conservation, ecology and management. Field trips for viewing birds in the wild, observing behavior and collecting data on habitat assessments are highlighted. Students participate in a community service project to gather data for avian conservation and management.
Course equivalencies: X-ENVS 267/BIOL 347

BIOL 348 Field Ornithology (3 Credit Hours)
Pre-requisites: ENVS 280 & ENVS 286 or BIOL 265 & BIOL 266 (BIOL 215 recommended but not required) Outcomes: Students will become skilled in critical reasoning, field techniques, and scientific investigation that demonstrate an understanding of knowledge and techniques used in field ornithology.
Field ornithology is an intensive 3-week engaged-learning course at the Loyola University Retreat and Ecology Campus during the peak of the migratory season intended to provide an introduction to the theory and practice of field ornithology. Emphasis will be on field identification and song recognition, census techniques, and avian behavior.
Course equivalencies: X - ENVS 369/BIOL 348

BIOL 349 Conservation and Sustainability of Neotropical Ecosystems (3 Credit Hours)
This course provides an introduction to conservation ecology in Neotropical ecosystems via classroom sessions and experiential learning activities during a Spring-Break field trip to Belize. Students will gain experience in environmental monitoring and biological survey methods.
Ecosystems studied: coral reefs, mangrove forests, subtropical rain and dry forests, savannas, rivers, wetlands. Enrollment Conditions: For Biology Majors/Minors: BIOL 265; For Environmental Science Majors: ENVS 280
Course equivalencies: X: ENVS 345/ BIOL 349
Outcomes:
Students will gain an understanding of tropical climates, neotropical terrestrial/aquatic ecosystems and applied conservation and environmental practices such as nature reserve design and management, community-based resource management, ecotourism, and ecoagriculture.

BIOL 350 Vertebrate Physiology Lec/Lab (4 Credit Hours)
Pre-requisites: BIOL 242, BIOL 243, BIOL 251, BIOL 282; CHEM 222 or CHEM 224 or (CHEM 240 pre-req and CHEM 260 co-req)
Lecture and laboratory. Animal function and structure; emphasis on organ physiology. Feeding, digestion, water relations, respiration, hormone systems, receptor and effector mechanisms, central nervous coordination, regulation of homeostasis, dynamics of the circulatory system and the physiology of bone and musculature.
Outcomes:
Students will demonstrate detailed understanding of how organ function is regulated at cellular and systems level.

BIOL 351 Sleep/Circadian Rhythms (3 Credit Hours)
Pre-requisites: BIOL 251, BIOL 282, NEUR 101 Outcomes: Students will become familiar with a variety of model systems used to study circadian rhythms, and learn how to critically read primary literature and lead discussions of this reading.
We will cover circadian rhythms one very prominent circadian-regulated behavior: sleep. We will investigate these topics at several different levels, spanning from cellular and molecular mechanisms to systems and behavioral approaches, and finally will look at pathologies of these systems that lead to human disorders.
Interdisciplinary Option: Neuroscience
BIOL 352 Neurobiology of Feeding in Health and Disease (3 Credit Hours)

Pre-requisites: NEUR 101, BIOL 251
Multiple interconnecting systems, coupling the brain with the rest of the body, signal the need to consume food and when to stop.
The overall aim of the course is to understand what drives us to eat and how dysregulation within these brain circuits underlies the contemporary obesity crisis.

Outcomes:
By completing this course, students will achieve an advanced understanding of the fundamental principles that govern the brain's control of energy homeostasis.

BIOL 354 Mammalian Reproduction (3 Credit Hours)

Pre-requisites: BIOL 251
Anatomy and physiology of male and female reproductive systems, fertilization, implantation, pregnancy, and birth; immunological aspects of reproduction.

Outcomes:
Students will understand structure/function relationships in reproductive biology and how reproductive systems are regulated at cellular levels.

BIOL 355 Parasitology Lec/Lab (4 Credit Hours)

A study of animal parasites, their distribution, structure, adaptations, life cycles, and host relationships.

Outcomes:
Students will learn to recognize the major groups of animal parasites, be able to explain their life cycles and describe the mechanisms that hosts use to ward off parasite infestation.

BIOL 356 The Evolution of Animal Sex (3 Credit Hours)

Pre-requisites: BIOL 251 and BIOL 282
Outcomes: Students will gain a deeper appreciation of the sexual diversity among animals at genetic, physiological, morphological and behavioral levels.
Among animals, sex cannot be simplified down to X's and Y's, or even males and females. Sex is diverse and dynamic. The class will discuss modern research around three themes: 1) sexual differentiation, 2) animal weapons and ornaments, and 3) reproduction and mating systems.

BIOL 357 Neural Disease, Degeneration, and Regeneration (3 Credit Hours)

Pre-requisites: BIOL 251, BIOL 282, NEUR 101
Outcomes: Students will understand current advances of genetic, developmental, molecular, and cellular mechanisms underlying the neurodegenerative diseases; Students will also learn how disease mechanisms affect neural function, cognition, and behavior.
This course offers an overview of cellular and molecular mechanisms underlying common neurodegenerative disorders. Mechanisms of neuronal cell death and application of stem cells in CNS regeneration will also be covered. Students will learn by reading assigned background materials and research articles, and participating in class discussions.

Interdisciplinary Option: Neuroscience

BIOL 358 Developmental Neurobiology (3 Credit Hours)

Pre-requisites: BIOL 251, BIOL 282, NEUR 101
This course focuses on cellular and molecular underpinnings of the development of neuronal features of the nervous system.
Topics include neural induction and subsequent differentiation events, regulation of neuronal survival, axon guidance, target selection, and synaptogenesis.

Interdisciplinary Option: Neuroscience

Outcomes:
Students will become familiar with principles of neural development and the studies that led to those principles; Students will also learn how to critically read primary research papers and present these papers to the class.

BIOL 359 Paleopathology (3 Credit Hours)

Pre-requisites: BIOL 251 and ANTH 326 or BIOL 326
Normal bone tissue and normal bone alterations and the impact of various disease processes on skeletal tissue. Students will be taught to assess and interpret patterns of human disease in processual rather than typological terms.

Course equivalencies: X-ANTH359/BIOL359

Outcomes:
Students will have command of biological anthropological approaches towards the understanding of human disease and will be familiar with theoretical issues germane to the field of paleopathology, biases and ethical issues, and the role that disease has played throughout human history.

BIOL 360 Field Biology (3 Credit Hours)

Pre-requisites: BIOL 265 and permission of chair
Ecological study of an area in North America outside Midwest. Includes a field trip to a specific region. Trip is at student expense.*

Outcomes:
Students will become familiar with an ecosystem outside the Chicago Region; gain a first-hand understanding of the interrelationships of living things and their environment; develop a loving appreciation of "wilderness.

BIOL 362 Neurobiology (3 Credit Hours)

Pre-requisites: NEUR 101 and BIOL 251
The purpose of this course is to introduce major principles and concepts of modern neurobiology. An emphasis is placed upon an understanding of the electrophysiology of the neuron and the manner in which groups of neurons are organized into functional nervous systems subserving sensory, motor or integrative functions.

Interdisciplinary Option: Neuroscience

Outcomes:
Student will gain a sold foundation in nervous system structure and function.

BIOL 363 Entomology Lec/Lab (4 Credit Hours)

Pre-requisites: BIOL 265
An introductory course that covers the morphology, metamorphosis, classification and biology of the major insect groups. The laboratory includes dissection and the use of analytical keys and figures to identify insect taxa. Field trips and student collections add to the laboratory experience.

Outcomes:
Students will learn to identify major insect groups in the field and in the laboratory; They will also learn to distinguish immature insects from adult insects and to recognize the numerous beneficial insects as well as the small number that are detrimental.
BIOL 365 Writing a Scientific Manuscript (3 Credit Hours)
Pre-requisites: BIOL 102, BIOL 112
A Process from Data Collection to Writing a Scientific Manuscript. This course is designed for upper level students interested in practicing the scientific process; including hypothesis construction, experimental design, data collection, and writing of a scientific paper detailing Introduction, Methods, Results and Discussion.
Outcomes:
Students would learn to develop hypotheses, design experiments based on those hypotheses, analyze data, and learn to construct and peer-review a scientific manuscript.

BIOL 366 Cell Physiology & Biochemistry (3 Credit Hours)
Pre-requisites: Bioinformatics majors: CHEM 224 or CHEM 222 or (CHEM 240 pre-req and CHEM 260 co-req); All other majors: BIOL 251 & CHEM 224 or CHEM 222 or (CHEM 240 pre-req and CHEM 260 co-req).
An introduction to biochemical principles as they relate to major biological themes such as the relationship between cellular structure and function, metabolism, thermodynamics, regulation, information pathways and evolution. BIOL 366 is cross-listed with CHEM 361.
Interdisciplinary Option: Forensic Science
Course equivalencies: X-BIOL366/BIOI366/CHEM361
Outcomes:
Students will study the basic concepts of biochemistry and will understand how thermodynamics govern biochemical processes; Catalytic strategies, as well as major pathways of both anabolism and catabolism, will also be learned.

BIOL 366L Cell Physiology & Biochemistry Lab (2 Credit Hours)
Introduction to modern techniques and instrumentation with an emphasis on cellular metabolism and protein biochemistry including purification and quantitation methods and enzyme kinetics.
Interdisciplinary Option: Forensic Science
This course satisfies the Engaged Learning requirement.
Outcomes:
Proficiency in performing variety of biochemical assays and the ability to write up results as a formal lab report.

BIOL 367 Bioimaging (4 Credit Hours)
Pre-requisites: BIOL 251 and BIOL 282; PHYS 112 or PHYS 114; Instructor Permission
This course focuses on light microscopy but also includes a section on Electron Microscopy. Topics include basic optical theory, history, sample preparation, microscope operation, digital image acquisition and analysis.
Outcomes:
Students will become adept at producing publication quality images using a variety of imaging techniques; Students will also learn how to correctly interpret results and properly present their data.

BIOL 368 Plant Ecology Lec/Lab (4 Credit Hours)
Pre-requisites: BIOL 265
Focuses on plant population dynamics; plant-animal interactions, including herbivory, pollination, dispersal; plant community dynamics, such as the processes of succession; and the effect of global climate on the distribution of major vegetation types. The laboratory is divided between weekend field trips to local forests, prairies and bogs, and laboratory studies.
Outcomes:
Students will achieve familiarity with major vegetation types and especially with local vegetation and natural areas; understand the dynamics of plant communities; understand the nature of research in plant ecology and gain familiarity with the primary literature; understand environmental issues as they relate to plant ecology.

BIOL 369 Invertebrate Biology (3 Credit Hours)
Broad survey of invertebrates including morphology, physiology, ecology, evolution, and systematics.

BIOL 370 Ichthyology Lec/Lab (4 Credit Hours)
Pre-requisites: BIOL 265
Lecture and laboratory and/or field trips. Systematics, phylogeny, anatomy, physiology, behavior, functional morphology and ecology of fishes. Includes field collecting trips in Lake Michigan and local streams and lakes and individual projects/research papers.
Outcomes:
Students will develop a detailed understanding of a range of topics in fish biology, with special emphasis on evolutionary relationships.

BIOL 373 Laboratory in Neuroscience I (4 Credit Hours)
Pre-requisites: NEUR 101, BIOL 251; and students must be either a Molecular/Cellular Neuroscience Major, a Cognitive/Behavioral Neuroscience major, or a Neuroscience Minor.
Students will be trained in various anatomical, physiological, behavioral, and neurobiological modeling techniques used to study the nervous system and the brain in the laboratory. This course is cross-listed as NEUR 301 & PSYC 388.
Interdisciplinary Option: Neuroscience
Course equivalencies: X-BIOL373/BIOI373
Outcomes:
Students will understand the characteristics of several research designs and methodologies of use in neuroscience research and will gain experience with basic neuroscience laboratory techniques.

BIOL 375 Aquatic Insects Lecture & Laboratory (4 Credit Hours)
Pre-requisites: BIOL 265
This course focuses on the classification and ecology of insects that have become fully or partially adapted to the aquatic environment. Emphasis will be on the ecology and biology (behavior, physiology and phylogeny) of aquatic insects. The course includes laboratory field trips to local and upper Midwest aquatic habitats.
Outcomes:
Students will acquire an understanding of the ecological relationships between aquatic insects and their physical and biological environment, including their interactions with humans.

BIOL 376 Seminar in Molecular/Cellular Neuroscience (3 Credit Hours)
Pre-requisites: BIOL 282 and BIOL 362
This lecture/discussion will span synaptic plasticity, modern approaches to studying neural circuits, and the therapeutic potential of neural stem cells. Students become familiar with principles of molecular/cellular approaches to the study of the nervous system through review articles and the primary literature.
Interdisciplinary Option: Neuroscience
Outcomes:
Students will become familiar with principles of molecular/cellular approaches to the study of the nervous system; Students will also learn how to evaluate primary literature.

BIOL 377 Molecular Pathogenesis (3 Credit Hours)
Introduction to the molecular mechanisms of disease pathology and therapeutic and control strategies, using a particular disease as model.
Outcomes:
Students will be able to explain the molecular basis for particular disease symptoms, understand therapeutic strategies, and use experimental results to form conclusions about disease molecular mechanisms.
BIOL 378 Dental Anthropology (0 Credit Hours)
Pre-requisites: ANTH 101 or any 100-level Biology course Outcomes:
Students will gain factual knowledge of teeth from an evolutionary perspective and will develop specific hands-on skills needed by dental anthropologists, dentists, and oral biologists including dental molding, casting, and wear scoring
This course examines teeth with an anthropological perspective. By using evolution by natural selection as our theoretical framework, students will learn dental anatomy, morphology, and variation. The course then focuses on embryology, dental development and eruption, and the biocultural ways humans use their teeth.
Course equivalencies: X- ANTH 327/BIOI 378

BIOL 378B Biological Topics for Bioethics Minor Capstone (3 Credit Hours)
Pre-requisites: Two prior science courses and two prior ethics courses required
The interdisciplinary team-taught Bioethics capstone course examines a topic in bioethics from both scientific and ethical points of view. Topics may include bio-technologies, concepts of race and gender, the environment, reproduction, and others. This course number provides an elective for Biology students when the Bioethics capstone's topic is biological.
Interdisciplinary Option: Bioethics
Outcomes:
Students will understand the connection between ethical and biological issues with regard to the special topic in biology

BIOL 379B Biological Topics for Bioethics Minor Capstone (3 Credit Hours)
Pre-requisites: Two prior science courses and two prior ethics courses The interdisciplinary team-taught Bioethics capstone course examines a topic in bioethics from both scientific and ethical points of view. Topics may include biotechnologies, concepts of race and gender, the environment, reproduction, and others. This course number provides an elective for Biology students when the Bioethics capstone's topic is biological.
Interdisciplinary Option: Bioethics
Outcomes:
Students will understand the connection between ethical and biological issues with regard to the special topic in biology

BIOL 380 Genetics and Evolution of Development (3 Credit Hours)
This course explores the evolution of the embryo and the patterns of gene regulation and morphogenesis that drive early development. Topics include evolution of nervous system patterning, shared human, mouse and frog regulatory systems and evolution of human genetic syndromes.
Outcomes:
Students will master the stages and regulation of development in a number of organisms through use of primary literature; Evidence of their mastery will be seen through grant writing exercises, in class presentations and conventional exams

BIOL 381 Epigenetics (3 Credit Hours)
Pre-requisites: BIOL 251 and BIOL 282; CHEM 222 or CHEM 224 or (CHEM 240 pre-req and CHEM 260 co-req) Outcomes: Students will understand epigenetic mechanisms, apply insights gained to evaluate the effect of epigenetic changes in development, disease and aging, and learn how to lead a class discussion
This course will introduce students to epigenetic mechanisms operating throughout life, which include chromatin regulation, DNA methylation, histone modifications and non-coding RNAs. Students will gain an appreciation of how different cell types can maintain drastically different gene expression patterns yet share the exact same DNA sequences.

BIOL 382 Molecular Genetics (3 Credit Hours)
Pre-requisites: BIOL 251 and 282; CHEM 222 or CHEM 224 or (CHEM 240 pre-req and CHEM 260 co-req) Outcomes: Students will be able to demonstrate a detailed understanding of (1) basic molecular techniques, (2) the macromolecules involved in genetic processes, and (3) published experiments that underlie our knowledge of these processes
This course covers the molecular details of genetic processes such as DNA replication, RNA and protein synthesis, gene regulation and genome organization.

BIOL 383 Population Genetics (3 Credit Hours)
Pre-requisites: BIOL 282 and MATH 132 or MATH 162
BIOL 235 is recommended. Fundamental principles of population, ecological, and evolutionary genetics, including molecular evolution and analysis of the genetic structure of populations.
Outcomes:
Students develop knowledge and awareness of population genetic theory and information; They learn how to apply basic tools of population genetic analysis

BIOL 384 Microbial Pathogenesis of Infectious Disease (3 Credit Hours)
Pre-requisites: BIOL 251 (Cell Biology) and BIOL 282 (Genetics) each with a C or higher
The course is focused on teaching students the way bacteria, viruses, fungi, and pathogens, can adhere, invade, replicate, and cause damage and disease in their hosts. The course focuses on the techniques used by researchers to ask questions about these processes.
Outcomes:
Students will understand the ways pathogens cause disease, read and review primary literature, and apply techniques used in a grant proposal on a topic of their interest

BIOL 385 Prin Electron Microscopy Lec/Lab (4 Credit Hours)
Pre-requisites: Permission of instructor, BIOL 341 recommended
This course focuses on the various areas of Electron Microscopy, both Scanning and Transmission. Topics include sample preparation, microscope operation, image acquisition using photographic and digital techniques, history and development, and new and special techniques.
Outcomes:
Student will become adept with the various techniques needed to produce research quality electron micrographs; Students will also learn how to correctly interpret their results, and properly present their data

BIOL 387 Genomics (3 Credit Hours)
Genomics is the compilation, characterization, and evaluation of DNA sequence information and its integration with established methods and genetic knowledge. This course will introduce the students to the study of genome structure and function and its application to biomedicine, agriculture, and evolution.
Interdisciplinary Option: Bioinformatics
Course equivalencies: X-BIOL387/BIOI387
Outcomes:
Students will acquire an in-depth knowledge of the nature of gene and genome structure, function, and evolution as well as the methods used to obtain and evaluate this knowledge; Students will be able to create meaningful web-based database search strategies and interpret the significance of results
BIOL 388 Bioinformatics (3 Credit Hours)
Students will engage in the applications of computer-based tools and
database searching to better understand the fields of genetics, genomics,
evolutionary biology, and personalized medicine. Students will be
introduced to scripting programming languages for analyzing biological
data sets.
Interdisciplinary Option: Bioinformatics
Course equivalencies: X-BIOL388/COMP381/BIOI388
Outcomes:
Students will be able to appropriately use computer software and
data bases to accurately analyze biological data and interpret the results,
applying their understanding of genetic processes

BIOL 389 Introduction to Pharmacology (3 Credit Hours)
Pre-requisites: BIOL 243, BIOL 251, BIOL 282; CHEM 222 or CHEM 224 or
(CHEM 240 pre-req & CHEM 260 co-req)
Principles and mechanisms of drug action. Topics discussed include
drug-receptor interaction, pharmacokinetics, drug distribution,
metabolism, and neuro-transmission, blood-brain barrier, and toxicology.
Outcomes:
Students will be able to describe the cellular and molecular mechanisms
of action for a variety of the most commonly used drugs in current
medical use

BIOL 390 Molecular Biology Laboratory (4 Credit Hours)
Pre-requisites: Bioinformatics majors: BIOL 282 & BIOL 283 and CHEM 222 or
CHEM 224 or (CHEM 240 pre-req and CHEM 260 co-req); All other
majors: BIOL 251, BIOL 282, BIOL 283 and CHEM 222 or CHEM 224 or
(CHEM 240 pre-req and CHEM 260 co-req)
This course is an intensive laboratory course in the basic principles and
techniques of molecular biology, including bacterial cloning, polymerase
chain reaction, restriction mapping, agarose gel electrophoresis, and DNA
sequencing.
Interdisciplinary Option: Bioinformatics, Neuroscience
This course satisfies the Engaged Learning requirement.
Course equivalencies: X-BIOL390/BIOI390
Outcomes:
Students will be able to demonstrate basic molecular biology skills
including manipulation of bacterial cultures and DNA, plasmid minipreps,
gel electrophoresis, cloning, polymerase chain reaction, and other
molecular techniques that may be specific to their chosen independent
projects

BIOL 391 Forensic Molecular Biology Lecture and Lab (5 Credit Hours)
Pre-requisites: BIOL 282, BIOL 283 & FRSC-BS Major
This course prepares students to work in forensic DNA analysis. The
lectures cover the basic aspects of DNA structure and function while
the laboratory gives students experience with the techniques and
instruments used in forensic DNA analysis.
Interdisciplinary Option: Forensic Science
Course equivalencies: BIOL 391/FRSC 371
Outcomes:
Students will have a strong theoretical understanding of STR marker
origin, population biology, and legal uses, and will be able to isolate and
process DNA for STR scoring

BIOL 392 Metagenomics (3 Credit Hours)
Pre-requisites: BIOL 282 Outcomes: Students will gain hands-on
experience with metagenomic methodologies while working in an
interdisciplinary, collaborative setting
Exploration of next-generation sequencing technologies for assessing
microbial diversity in ecological niches.
Interdisciplinary Option: Bioinformatics
This course satisfies the Engaged Learning requirement.
Course equivalencies: X-COMP 384/BIOL 392/COMP 392

BIOL 395 Special Topics in Biology (3 Credit Hours)
Special areas of study outside the usual curriculum, that vary each time
the course is offered.
Outcomes:
Students will master a unique topic in biology

BIOL 395L Special Topics Laboratory (1-4 Credit Hours)
Laboratory. Special areas of study outside the usual curriculum, that vary
each time the course is offered.
Outcomes:
Students will master a unique topic in biology

BIOL 396 Research (3 Credit Hours)
Pre-requisites: BIOL 296 (min
1 credit), Permission of Instructor; Contract Required. Laboratory
or field research under faculty guidance emphasizing hypothesis
testing, literature searches, experimental design, and use of appropriate
techniques. Outcome: Students will learn the full set of research skills
required in doing an independent project and reporting the results.
Interdisciplinary Option: Neuroscience
This course satisfies the Engaged Learning requirement.
Course equivalencies: BIOL299/BIOL396

BIOL 398 Internship in Biology (1-3 Credit Hours)
Pre-requisites: Permission of Instructor; Contract required
A supervised field placement intended to give students training or work
experience in aspects of biology that cannot be obtained on campus.
Outcome: Students will acquire practical experience in biology-related job
settings.
This course satisfies the Engaged Learning requirement.

BIOL 399 Individual Study (1-3 Credit Hours)
Permission of Instructor; Contract required. Directed study of a specific
topic by an individual student studying with a single faculty member.
Outcome: Students will master a unique topic in biology.