COMPUTER SCIENCE (BS)

The B.S. degree program in computer science provides a balance between theoretical foundations and applied computer science with the ultimate goal of presenting knowledge likely to be of ongoing value throughout one's career. The preparation of the B.S. is aimed at students who want to pursue a career as an industry practitioner and/or as an academic.

Among the 25 occupation groups of The Bureau of Labor Statistics, Computer and Information Technology is rated second highest in median pay and fourth highest in projected employment growth for the period 2014 to 2024.

Curriculum

Code	Title	Hours
Major Requirements		
MATH 161 or MATH 131	Calculus I 1	Applied Calculus I

COMP-BS Restricted Electives
Select nine credit hours from the following: 9

COMP 301	Introduction to Computer Security
COMP 313	Object-Oriented Design
COMP 330	Software Engineering
COMP 332	Requirements Engineering
COMP 339	Distributed Systems
COMP 341	Human-Computer Interaction
COMP 343	Computer Networks
COMP 353	Database Programming
COMP 364	High Performance Computing
COMP 370	Software Quality
COMP 379	Machine Learning

Practicum Capstone
Select six credits taken from one or more of the following: ${ }^{2} \quad 6$

COMP 312	Open Source Software Practicum
COMP 390	Broadening Participation in STEM (Computing, Math \& Science)
COMP 391	Internship in Computer Science
COMP 398	Independent Study

Computer Science Free Electives
COMP 300-Level Course(s)
Select one of the following: COMP $125 \quad$ Visual Information Processing COMP 300-Level Course
Total Hours
By arrangement with the Undergraduate Program Director, the extra credits from MATH 161 Calculus I/MATH 162 Calculus II may be applied towards the "Computer Science Free Electives" category.
2See the details of registering in the links for each course. Students are encouraged to complete these credits during junior and senior years to draw on prior experience.

Note: With permission, extra credits of MATH 161 Calculus I, MATH 162 Calculus II, or 300 level MATH, PHYS, or STAT for double majors can be applied in this category.)

Suggested Ordering of Courses COMP-BS Sample Schedule

The below sequence of courses is meant to be used as a suggested path for completing coursework. An individual student's completion of requirements depends on course offerings in a given term as well as the start term for a major or graduate study. Students should consult their advisor for assistance with course selection

Course	Title	Hours
Year 1		
Fall		
COMP 150	Introduction to Computing ${ }^{1}$	3
COMP 141	Introduction to Computing Tools and Techniques	3
MATH 131	Applied Calculus ${ }^{2}$	3
CORE: Philosophical Knowledge Tier 1		3
CORE: College Writing Seminar		3
UNIV 101	First Year Seminar	1
	Hours	16
Spring		
COMP 170	Introduction to Object-Oriented Programming ${ }^{3}$	3
COMP 163	Discrete Structures	3
MATH 132	Applied Calculus II ${ }^{4}$	3
CORE: Historical Knowledge Tier 1		3
CORE: Ethics		3
	Hours	15

Year 2

Fall
COMP 271 Data Structures I 3
COMP 264 Introduction to Computer Systems 3
STAT 203 Introduction to Probability \& Statistics ${ }^{5} 3$

CORE: Theology and Religious Studies Tier 1

CAS Language Requirement 101 level 6	3

Spring

COMP 272 Data Structures II 3

COMP 317	Social, Legal, and Ethical Issues in Computing	3
CORE: Scientific Knowledge Tier 1		3
CORE: Societal \& Cultural Knowledge Tier 1		3
CAS Language Requirement 102 level		3
Hours		15
Year 3		
Fall		
COMP 363	Design and Analysis Computer Algorithms	3
COMP 310	Operating Systems	3
COMP Free Elective		1
CORE: Literary Knowledge \& Experience Tier 1		3
CORE: Artistic Knowledge \& Experience		3
CORE: Philosophical Knowledge Tier 2		3
Hours		16
Spring		
COMP 371	Programming Languages	3
COMP-BS Restricted Elective		3
CORE: Theology and Religious Studies Tier 2		3
CORE: Scientific Knowledge Tier 2		3
CORE: Historical Knowledge Tier 2		3
Hours		15
Year 4		
Fall		
COMP-BS Restricted Elective		3
COMP Practicum		3
CORE: Literary Knowledge \& Experience Tier 2		3
CORE: Societal \& Cultural Knowledge Tier 2		3
CAS Elective		3
Hours		15
Spring		
COMP-BS Restricted Elective		3
COMP Practicum		3
COMP Free Elective		3
COMP Free Elective if COMP 150 not taken (3)		3
CAS Elective		3
	Hours	15
Total Hours		122
1 COMP 150 Introduction to Computing will apply to COMP Free Electives; students with prior experience in computer programming, for example a high school course modeled on the Exploring Computer Science or Computer Science Principles curriculum may replace this course with a different COMP Free Elective at any time during the program. A score of 4 or 5 on the AP CS Principles Exam will earn actual credit for this course.		
${ }^{2}$ May substitute MATH 161 Calculus I and may use the extra credit towards COMP Free Electives.		
${ }^{4}$ May substitute MATH 162 Calculus II and may use the extra credit towards COMP Free Electives.		
${ }^{5}$ May subst	TH 212 Linear Algebra	

${ }^{6}$ Language must be completed through the 102 course level or through an exam.

General Notes

- Credits never can be double-counted for different categories of the requirements for the major. But a course may satisfy a major requirement and also satisfy a University and/or College requirement (e.g., Core, residency, Engaged Learning, Writing Intensive).
- It is usually not meant to combine a computing major or minor with another, the principal exception being CCFR-MINR; see more detail in the double-dipping rules (https://catalog.luc.edu/undergraduate/arts-sciences/computer-science/\#policiestext).

College of Arts and Sciences Graduation Requirements

All Undergraduate students in the College of Arts and Sciences are required to take two Writing Intensive courses (6 credit hours) as well as complete a foreign language requirement at 102-level or higher (3 credit hours) or a language competency test. More information can be found here (https://www.luc.edu/cas/college-requirements/).

Additional Undergraduate Graduation Requirements

All Undergraduate students are required to complete the University Core, at least one Engaged Learning course, and UNIV 101. SCPS students are not required to take UNIV 101. Nursing students in the Accelerated BSN program are not required to take core or UNIV 101. You can find more information in the University Requirements (https://catalog.luc.edu/ undergraduate/university-requirements/) area.

Learning Outcomes

- Knowledge of Core Computer Science Concepts: This includes understanding data structures, algorithms, computer architecture, principles of software engineering, databases, networking, and more. The goal is to give students a comprehensive grounding in the key ideas that underpin computer science.
- Problem-Solving Skills: Graduates should be able to use their knowledge of computer science to solve complex problems. This includes the ability to design, implement, and evaluate a computational system to meet a given set of requirements.
- Proficiency in Programming: Students should be proficient in at least one high-level programming language and have experience with several others. They should also be familiar with the principles of programming languages and be able to learn new languages as needed.
- Understanding of Mathematical and Scientific Principles: Graduates should understand the mathematical and scientific principles that underpin computer science. This includes discrete mathematics, probability and statistics, and more.
- Ethical and Social Implications: An understanding of professional, ethical, legal, security, and social issues and responsibilities as they pertain to computer science.
- Teamwork and Communication: Students should be able to work effectively on teams to accomplish a common goal, and they should be able to communicate their ideas and work effectively both verbally and in writing.
- Ability to Learn Independently: As technology continually evolves, it's crucial that students develop the ability to learn new tools, techniques, and concepts independently.

