SOFTWARE ENGINEERING (BS)

With software applications of enormous size, complexity, and expense now prevalent in diverse domains, software engineering has never been as important a field as it is now. Students gain necessary talents to be successful in today's organizations, following current industry practices: designing and developing software; understanding and applying software development processes and methodologies in their work; leveraging software development tools used in the various phases of the development life cycle, and functioning as an effective member of a software development team or organization. Students develop their knowledge and skill through high-level electives where they write major projects in diverse areas such as client/server programming for the web, distributed programming for large clusters of processors, database programming, and markup language transformation. While working on modern applications with current software engineering practices such as Extreme Programming, students learn to analyze and apply good algorithms and other relevant tools.

The Bureau of Labor Statistics indicates high median pay and estimates a 17% increase (much higher than average) in the demand for software developers for the period 2014 to 2024.

Curriculum

Code	Title	Hours
Major Requirements		
Select one of the	following:	3-4
MATH 131	Applied Calculus I	
MATH 161	Calculus ${ }^{1}$	
Select one of the following:		3
STAT 103	Fundamentals of Statistics	
STAT 203	Introduction to Probability \& Statistics	
ISSCM 241	Business Statistics	
PSYC 304	Statistics	
COMP 141	Introduction to Computing Tools and Techniques	- 3
COMP 163 or MATH 201	Discrete Structures Introduction to Discrete Mathematics \& Number Theory	3
COMP 170	Introduction to Object-Oriented Programming	3
COMP 264	Introduction to Computer Systems	3
COMP 271	Data Structures I	3
COMP 272	Data Structures II	3
COMP 313	Object-Oriented Design	3
COMP 317	Social, Legal, and Ethical Issues in Computing	3
COMP 330	Software Engineering	3
SWEN-BS Restricted Electives		
Select nine credits hours from the following:		9
COMP 332	Requirements Engineering	
COMP 335	Formal Methods in Software Engineering	
COMP 370	Software Quality	
COMP 371	Programming Languages	
COMP 373	Advanced Object-Oriented Programming	
COMP 382	Compiler Construction	

Practicum Capstone

Select six credit hours from the following: ${ }^{2}$		6
COMP 312	Open Source Software Practicum	
COMP 390	Broadening Participation in STEM (Computing, Math \& Science)	
COMP 391	Internship in Computer Science	
COMP 398	Independent Study	
Computer Science Electives		
Select one of the following:		3
COMP 125	Visual Information Processing	
COMP 150	Introduction to Computing	
COMP 300-Level Course		
COMP 300-Lev	Courses	10

Total Hours 61
${ }^{1}$ By arrangement with the Undergraduate Program Director, the extra credit from MATH 161 Calculus I may be applied towards the "Computer Science Free Electives" category.
2 See the details of registering in the links for each course. Students are encouraged to complete these credits during junior and senior years to draw on prior experience.

Suggested Ordering of Courses SWEN-BS Sample Schedule

The below sequence of courses is meant to be used as a suggested path for completing coursework. An individual student's completion of requirements depends on course offerings in a given term as well as the start term for a major or graduate study. Students should consult their advisor for assistance with course selection.

Course	Title	Hours
Year 1		
Fall		
COMP 150	Introduction to Computing ${ }^{1}$	3
COMP 141	Introduction to Computing Tools and Techniques	3
MATH 131	Applied Calculus ${ }^{2}$	3
CORE: Philosophical Knowledge Tier 1		3
CORE: College Writing Seminar		3
UNIV 101	First Year Seminar	1
	Hours	16
Spring		
COMP 170	Introduction to Object-Oriented Programming ${ }^{3}$	3
COMP 163	Discrete Structures	3
STAT 103	Fundamentals of Statistics ${ }^{4}$	3
CORE: Historical Knowledge Tier 1		3
CORE: Ethics		3
	Hours	15
Year 2		
Fall		
COMP 271	Data Structures I	3
COMP 317	Social, Legal, and Ethical Issues in Computing	3

COMP 264	Introduction to Computer Systems	3
CORE: Theology and Religious Studies Tier 1 3		
CAS Language Requirement 101 level ${ }^{5}$ 3		
	Hours	15
Spring		
COMP 272	Data Structures II	3
COMP 330	Software Engineering	3
CORE: Scientific Knowledge Tier 1 3		
CORE: Societal \& Cultural Knowledge Tier 1 3		
CAS Language Requirement 102 level 3		
	Hours	15
Year 3		
Fall		
SWEN-BS Restricted Elective 3		
COMP Free Elective		
COMP Free Elective		
CORE: Literary Knowledge \& Experience Tier 1		
CORE: Artistic Knowledge \& Experience		
CORE: Philosophical Knowledge Tier 2		
	Hours	16
Spring		
COMP 313	Object-Oriented Design	3
SWEN-BS Restricted Elective		
CORE: Theology and Religious Studies Tier 2		
CORE: Scientific Knowledge Tier 2		
CORE: Historical Knowledge Tier 2		
Hours 15		
Year 4		
Fall		
COMP Practicum 3		
SWEN-BS Restricted Elective		
CORE: Literary Knowledge \& Experience Tier 2		
CAS Elective 3		
	Hours	15
Spring		
COMP Practicum 3		
COMP Free Elective 3		
COMP Free Elective 3		
COMP Free Elective if COMP 150 not taken 3		
CAS Elective 3		
	Hours	15
Total Hours 122		
${ }^{1}$ COMP 150 Introduction to Computing will apply to COMP Free Electives; students with prior experience in computer programming, for example a high school course modeled on the Exploring Computer Science (https://www.exploringcs.org/) or Computer Science Principles (https://apcentral.collegeboard.org/courses/ap-computer-scienceprinciples/) curriculum may replace this course with a different COMP Free Elective at any time during the program. A score of 4 or 5 on the AP CS Principles Exam will earn actual credit for this course. ${ }^{2}$ May substitute MATH 161 Calculus I and may use the extra credit towards COMP Free Electives.		

${ }^{3}$ A score of 4 or 5 on the AP CS A Exam will earn credit for this course.
${ }^{4}$ May substitute STAT 203 Introduction to Probability \& Statistics or ISSCM 241 Business Statistics or PSYC 304 Statistics.
${ }^{5}$ Language must be completed through the 102 course level or through an exam (https://www.luc.edu/cas/college-requirements/).

General Notes

- Credits never can be double-counted for different categories of the requirements for the major. But a course may satisfy a major requirement and also satisfy a University and/or College requirement (e.g., Core, residency, Engaged Learning, Writing Intensive).
- It is usually not meant to combine a computing major or minor with another, the principal exception being CCFR-MINR; see more detail in the double-dipping rules (https://catalog.luc.edu/undergraduate/arts-sciences/computer-science/\#policiestext).

College of Arts and Sciences Graduation Requirements

All Undergraduate students in the College of Arts and Sciences are required to take two Writing Intensive courses (6 credit hours) as well as complete a foreign language requirement at 102-level or higher (3 credit hours) or a language competency test. More information can be found here (https://www.luc.edu/cas/college-requirements/).

Additional Undergraduate Graduation Requirements

All Undergraduate students are required to complete the University Core, at least one Engaged Learning course, and UNIV 101. SCPS students are not required to take UNIV 101. Nursing students in the Accelerated BSN program are not required to take core or UNIV 101. You can find more information in the University Requirements (https://catalog.luc.edu/ undergraduate/university-requirements/) area.

Learning Outcomes

- Knowledge of Software Development Lifecycle: Students should understand the various stages of software development, from requirements elicitation, to design, implementation, testing, and maintenance.
- Proficiency in Programming: Graduates should be proficient in several programming languages and have a deep understanding of objectoriented design and other software paradigms.
- Software Design Skills: Graduates should be able to design, implement, validate, and maintain software systems. This includes the ability to work with complex software architectures and design patterns.
- Understanding of Software Quality Assurance: This includes knowledge of testing methodologies, debugging, and techniques to ensure software reliability, usability, security, and performance.
- Project Management Skills: Students should understand software project planning and management techniques. This includes knowledge of cost estimation, risk management, project scheduling and tracking.
- Teamwork and Communication: Similar to computer science, students should be able to work effectively on teams and be able to communicate their ideas and work effectively both verbally and in writing.
- Ethical and Professional Responsibility: Graduates should understand professional, ethical, legal, and societal responsibilities related to software engineering.

