MOLECULAR AND CELLULAR NEUROSCIENCE (BS)

The B.S. in Molecular/Cellular Neuroscience focuses on the genetic, biochemical, and electrophysiological underpinnings of the development, function, plasticity, pathology, and repair of the nervous system.

Our neuroscience majors are designed to provide both breadth and depth to the neuroscience knowledge base of our students, and afford ample opportunities for developing creative and critical thinking skills needed to advance neuroscience (or any other life science field).

Related Programs

Major

 Cognitive and Behavioral Neuroscience (BS) (https://catalog.luc.edu/ undergraduate/arts-sciences/neuroscience/cognitive-behavioralneuroscience-bs/)

Minor

 Neuroscience Minor (https://catalog.luc.edu/undergraduate/artssciences/neuroscience/neuroscience-minor/)

Curriculum

Code	Title H	lours
Basic Science an	d Math Foundations	
BIOL 101	General Biology I	4
& BIOL 111	and General Biology I Lab	
BIOL 102	General Biology II	4
& BIOL 112	and General Biology II Lab	
BIOL 251	Cell Biology	3
BIOL 252	Cell Biology Laboratory	1
or BIOL 283	Genetics Laboratory	
BIOL 282	Genetics	3
BIOL 335 / STAT 335	Intro to Biostatistics	3
or PSYC 304	Statistics	
Select one of the	following three sets of classes:	4
CHEM 101	General Chemistry A Lecture/Discussion	
& CHEM 111	and General Chemistry Lab A	
CHEM 105	Chemical Principles	
CHEM 160 & CHEM 161	Chemical Structure and Properties and Chemical Structure and Properties Laboratory	,
Select one of the	following three Lecture courses:	3-4
CHEM 180	Chemical Reactivity I	
CHEM 221	Organic Chemistry I Lec/Disc	
CHEM 223	Organic Chemistry A Lec/Disc	
Select one of the	following Lab courses:	1
CHEM 112	General Chemistry Lab B	
CHEM 181	Chemical Reactivity I Lab	
MATH 131	Applied Calculus I	3-4
or MATH 161	Calculus I	
Select one of the	following three sets of classes:	4
PHYS 111	College Physics I Lec / Dis	
& 111L	and College Physics Laboratory I	

PHYS 121 & PHYS 111L	College Physics I with Calculus Lecture/ Discussion	
	and College Physics Laboratory I	
PHYS 125	General Physics I Lec/Dis	
& 125L	and General Physics Laboratory I	
	following three sets of classes:	
PHYS 112 & 112L	College Physics II Lec/Disc and College Physics Lab II	
PHYS 122 & PHYS 112L	College Physics II with Calculus Lecture/ Discussion and College Physics Lab II	
PHYS 126 & 126L & 126F	General Physics II Lec/Dis and General Physics Laboratory II and Freshman Projects	
PSYC 101	General Psychology	
	undations Courses	
BIOL 362		
NFUR 101	Neurobiology Introduction to Neuroscience	
PSYC 382 /	Behavorial and Cognitive Neuroscience	
BIOL 284		
	r Neuroscience Track	
	Neuroscience Specialty Area Courses	
-	ar of Chemistry lectures:	
Select one of the	•	3.
CHEM 222	Organic Chemistry II Lec/Disc	
CHEM 224	Organic Chemistry B Lec/Disc	
CHEM 240	Chemical Reactivity II	
Select one of the	following:	3.
CHEM 102	General Chemistry B Lecture/Discussion	
CHEM 106	Basic Inorganic Chemistry	
CHEM 260	Quantitative Methods in Chemistry	
Molecular/Cellulai	Neuroscience Lecture Electives	
Select three of th	e following:	7
BIOL 307	Biology of Stem Cells	
BIOL 351	Sleep/Circadian Rhythms	
BIOL 352	Neurobiology of Feeding in Health and Disease	
BIOL 357	Neural Disease, Degeneration, and Regeneration	
BIOL 358	Developmental Neurobiology	
BIOL 381	Epigenetics	
BIOL 382	Molecular Genetics	
BIOL 395	Special Topics in Biology (select topics related to neuroscience)	
CHEM 361 / BIOL 366	Principles of Biochemistry	
or CHEM 37	'(Biochemistry I	
NEUR 300	Seminar in Neuroscience	
PSYC 240 / BIOL 240	Psychology-Biology of Perception	
PSYC 378	Drugs and Behavior	
PSYC 383 / COMP 386	Methods in Computational Neuroscience	
Molecular/Cellular	Neuroscience Lab Electives	
Select two of the	following:	3.

BIOL 252

Cell Biology Laboratory

	or BIOL 283	Genetics Laboratory		
	BIOL 315	Introductory Immunology Lec/Lab		
	BIOL 366L	Cell Physiology & Biochemistry Lab		
	or CHEM 37	2Biochemistry Laboratory I		
	BIOL 367	Bioimaging		
	BIOL 390	Molecular Biology Laboratory		
	BIOL 395L	Special Topics Laboratory (select topics related to neuroscience)		
	NEUR 301 / BIOL 373 / PSYC 388	Laboratory in Neuroscience I		
	PSYC 311 / BIOL 313	Lab in Psychobiology		
	or PSYC 316	Lab in Experimental Psychology: Sense & Perception	1	
	PSYC 384 / COMP 389	Computational Modeling of the Brain		
N	1ay include one o	of the following independent research options:		
	BIOL 396	Research (with a Molecular/Cellular focus)		
	BIOL 398	Internship in Biology (with a Molecular/Cellular focus)		
Molecular/Cellular Neuroscience Capstone				
В	IOL 376	Seminar in Molecular/Cellular Neuroscience	3	
	or BIOL 358	Developmental Neurobiology		
T	otal Hours		68	

Undergraduate Research

Neuroscience students have numerous opportunities to conduct scientific research in the labs of our neuroscience-affiliated faculty at Loyola's Lake Shore Campus (https://www.luc.edu/neuroscience/aboutus/facultydirectoryandresearch/#den422313), in the labs of other faculty on any of Loyola's campuses, or at other institutions in the Chicago area. Depending on the applicability of the research project to the student's Neuroscience Major or Minor, independent research may be able to qualify for course credit as one of the required specialty labs (see below).

Molecular/Cellular Neuroscience Majors Research Credit

Molecular/Cellular Neuroscience (NRMC) majors can earn specialty lab credit for conducting **independent research that has a molecular/cellular focus** in labs within the biology department or at an appropriate external internship site. Please see the Specialty lab credit for independent research—NRMC document on the Neuroscience program website (https://www.luc.edu/neuroscience/undergraduateresearch/) for a more thorough explanation of earning NRMC credit through one of the 3-credit courses below:

- · BIOL 396 Research (relevant research with faculty in Biology)
- BIOL 398 Internship in Biology (relevant research at an external site)

Please contact the NRMC Director for questions about earning credit from molecular/cellular or neuroscience-related research in other departments (e.g., chemistry, psychology).

Suggested Sequence of Courses

Course	Title	Hours
Freshman		
Fall		
BIOL 101	General Biology I	3

BIOL 111	General Biology I Lab	1
CHEM 160	Chemical Structure and Properties	3
CHEM 161	Chemical Structure and Properties Laboratory	1
PSYC 101	General Psychology	3
MATH 131	Applied Calculus I	3
	Hours	14
Spring		
BIOL 102	General Biology II	3
BIOL 112	General Biology II Lab	1
CHEM 180	Chemical Reactivity I	3
CHEM 181	Chemical Reactivity I Lab	1
NEUR 101	Introduction to Neuroscience	3
NEON 101	Hours	11
Cambamana	nouis	
Sophomore		
Fall	0 5 : 11 (6:	0
PHYS 111	College Physics I Lec / Dis	3
PHYS 111L	College Physics Laboratory I	1
BIOL 251	Cell Biology	3
CHEM 240	Chemical Reactivity II	3
	Hours	10
Spring		
PHYS 112	College Physics II Lec/Disc	3
PHYS 112L	College Physics Lab II	1
BIOL 282	Genetics	3
CHEM 260	Quantitative Methods in Chemistry	3
BIOL 252	Cell Biology Laboratory	1
or BIOL 283	or Genetics Laboratory	
	Hours	11
Junior		
Fall		
BIOL 362	Neurobiology	3
STAT 335 / BIOL 335	Introduction to Biostatistics	3
or PSYC 304	or Statistics	
Specialty Lecture		1-3
	Hours	7
Spring		
PSYC 382	Behavorial and Cognitive Neuroscience	3
Specialty Lecture		1-3
	Hours	4
Senior		
Fall		
Specialty Lecture		3
Specialty Lab		3-4
	Hours	6
Spring		
BIOL 376	Seminar in Molecular/Cellular	3
or BIOL 358	Neuroscience	
	or Developmental Neurobiology	
Specialty Lab		2-3
	Hours	5
	Total Hours	68

Course Objectives

Because the nervous system is the organ for behavior, neuroscience cuts across traditional fields in the biological and behavioral sciences. Owing to this breadth, we have designed two major tracks for students who wish to focus on neuroscience in their course of study at LUC. Completing either of these options will prepare students well for a variety of careers, including but not limited to medicine and life sciences research, particularly in neuroscience-related fields. Both options require at least two semesters of courses in biology, chemistry, and physics.

Lecture Course Objectives

Both of the majors require three courses in neuroscience fundamentals: NEUR 101 (https://catalog.luc.edu/search/?P=NEUR %20101) Introduction to Neuroscience, BIOL 362 (https://catalog.luc.edu/search/?P=BIOL%20362) Neurobiology (which stresses cellular and electrophysiological mechanisms of neural function), and PSYC 382 (https://catalog.luc.edu/search/?P=PSYC%20382)/BIOL 284 (https://catalog.luc.edu/search/?P=BIOL%20284) Behavioral and Cognitive Neuroscience (which stresses the neural substrates underlying mental processing and behavior). After completing this sequence, majors can design their own course of study within cognitive/behavioral or molecular/cellular neuroscience. There is some overlap in the list of lecture courses from which students may choose to complete their elective requirements, but there is also great diversity in the topics that are available in each major track.

Lab Course Objectives

Aside from first-year labs in chemistry and biology, and organic chemistry lab for molecular/cellular neuroscience majors, neuroscience majors choose their own lab experiences. Because the nervous system is cellular, computational, and a control center, the range of techniques that are useful is extremely broad, from cellular/molecular to behavioral, and the student can decide which techniques will be most helpful in answering the questions they want to address. Students who are interested in conducting independent neuroscience research have several neuroscience labs from which to choose, and may also seek permission to carry out a neuroscience-relevant project in a lab that is not focused on neuroscience. Independent research is the best preparation for doctoral programs, and is also regarded highly by medical, dental and other life science professional schools. For this reason, getting an independent research position in a lab is competitive.

Seminar Courses

There are three seminar style courses available to neuroscience undergraduates. In these courses, students tackle the primary literature and react to seminars given by neuroscientists on their research.

Molecular/Cellular Neuroscience majors are invited to take the 1 credit hour NEUR 300 (https://catalog.luc.edu/search/?P=NEUR %20300) Seminar in Neuroscience course, providing basic exposure to the primary literature and a wide range of research talks. Both major tracks culminate with a required capstone seminar class, which immerses the students in the primary literature and encourages development of critical thinking and presentation skills.

College of Arts and Sciences Graduation Requirements

All Undergraduate students in the College of Arts and Sciences are required to take two Writing Intensive courses (6 credit hours) as well as complete a foreign language requirement at 102-level or higher (3 credit

hours) or a language competency test. More information can be found here (https://www.luc.edu/cas/college-requirements/).

Additional Undergraduate Graduation Requirements

All Undergraduate students are required to complete the University Core, at least one Engaged Learning course, and UNIV 101. SCPS students are not required to take UNIV 101. Nursing students in the Accelerated BSN program are not required to take core or UNIV 101. You can find more information in the University Requirements (https://catalog.luc.edu/undergraduate/university-requirements/) area.

Learning Outcomes

By the end of this program of study, students will be able to:

- functional neuroanatomy at the gross, cellular, and subcellular levels.
 [Neuroanatomy]
- electrochemical signaling and information processing in the nervous system. [Neurophysiology]
- the general methodological approaches, applications, strengths, and weaknesses of the major laboratory and computational techniques used in the study of the nervous system. [Neuroscience Methods]
- the neural bases of sensory processing and behavior (e.g., movement, appetitive behaviors, biological rhythms). [Sensory/Behavior]
- the neural bases of cognitive and affective aspects of mental life (e.g., memory, attention, executive function, language, emotion).
 [Cognitive/Affective]
- genetic, environmental, and experiential influences on neural development and neuroplasticity. [Neural Development/Plasticity]
- the relationships between neurological and psychiatric disorders (e.g., Alzheimer's disease, Parkinson's disease, schizophrenia, depression), their underlying neuropathology, and common treatments. [Clinical Disorders]
- read, understand, critically evaluate, and draw appropriate conclusions from reports of neuroscientific investigations. [Critical Analysis]
- effectively communicate findings from neuroscience research studies to both scientific and nonscientific audiences in multiple formats.
 [Scientific Communication]
- formulate scientific questions, construct testable hypotheses, and design scientific investigations that contribute to neuroscience. [Research Design]
- engage in scientific investigations using appropriate neuroscientific laboratory or computational techniques, statistically analyze the data, and interpret the findings. [Laboratory Skills & Inquiry/Statistical Analysis]
- develop awareness of the philosophical, moral, and ethical issues raised by neuroscience and influences of neuroscience on other fields such as medicine, education, and social sciences. [Science & Society]