PHYSICS (BS) + ENGINEERING (BS)

If you are a student who recognizes the value of broadening your educational experience to include one of the fundamental sciences, as well as liberal arts and engineering, Loyola University Chicago’s Dual-Degree Physics/Engineering Program may be just right for you.

Through the Physics (BS) + Engineering (BS) program, students can earn two baccalaureate degrees: a BS in Physics from Loyola and a bachelor’s in Engineering from an affiliated engineering school. In this five-year program, students complete a three-year degree plan in physics at Loyola and then two years of concentrated engineering studies at the partner institution. This is an excellent route for students interested in careers in aerospace, civil, electrical, and mechanical engineering.

Learning Outcomes

In this program, a student can earn two baccalaureate degrees: a Bachelor of Science in Physics from Loyola University Chicago and a Bachelor in Engineering from an affiliated engineering school. Typically, three years of study in the social sciences, humanities, mathematics and physical sciences at Loyola are required, followed by two years of concentrated engineering studies at the school of engineering.

Loyola University Chicago has formal affiliations with Washington University in St. Louis, Columbia University in New York City, and with Notre Dame University in South Bend, Indiana.

Students can also choose other schools that suit their interest to complete the engineering degree. Many of our students have completed their engineering degrees at other universities such as University of Illinois Urbana-Champaign, University of Illinois at Chicago, Northwestern University, University of Michigan, and Iowa State University to complete their engineering studies.

Using as starting point the outstanding education in the Jesuit tradition offered by Loyola, which emphasizes breadth and depth of training in the liberal arts, humanities, and social sciences, upon completion of this dual degree program students will:

• Gain foundational understanding of physics, a fundamental science that has broad application in existing and emerging technologies;
• Acquire the intermediate level of mathematical tools needed to effectively address physics and engineering problems;
• Possess an understanding of the fundamental engineering fields, and the ability to apply their combined Physics/Engineering knowledge to solve real world problems in the engineering field of their choosing (mechanical, chemical, biomedical, electrical, civil industrial, computer, systems, environmental, and financial—engineering);
• Gain an understanding and appreciation of interdisciplinary approach in the physical and engineering sciences.